К основному контенту

TCP/IP vs. OSI: Какие Различия у Этих Двух Моделей?

Когда мы говорим о коммутаторах уровня 2 и коммутаторах уровня 3, мы фактически имеем в виду уровни общей модели протокола — модели с открытым исходным кодом (OSI). Они обычно используется в описании сетевых коммуникаций. Передача данных между различными сетями невозможна, если отсутствуют общие правила передачи и получения пакетов данных. Эти правила известны как протоколы, среди которых протокол TCP (протокол управления передачей)/IP (интернет протокол) является одним из наиболее широко используемых. Модель TCP/IP широко используется в описании сети и старше модели OSI (open systems interconnection basic reference model — Базовая Эталонная Модель Взаимодействия Открытых Систем). У них обоих много слоев, в чем разница между ними?
Уровни модели OSI
Модель OSI является концептуальной моделью, которая характеризует и стандартизирует то, как различные программные и аппаратные компоненты, участвующие в сетевой коммуникации, должны разделять задачи и взаимодействовать друг с другом. Она имеет семь уровней. На следующем рисунке показаны названия и основные функции каждого уровня.
уровни-модели-OSI
Рис.1 7 уровней модели OSI
Уровни модели TCP/IP
Модель TCP/IP также является многоуровневой эталонной моделью, но это четырехуровневая модель. Она широко известна как TCP/IP, потому что ее основополагающие протоколы TCP и IP, однако, не только эти два протокола используются в этой модели.
Прикладной уровень
Прикладной уровень модели TCP/IP предоставляет приложениям возможность доступа к службам других уровней и определяет протоколы, используемые приложениями для обмена данными. Наиболее широко известные протоколы прикладного уровня: HTTP, FTP, SMTP, Telnet, DNS, SNMP и протокол маршрутизации информации (RIP).
Транспортный уровен
Транспортный уровень отвечает за предоставление на прикладном уровне служб связи сеансов и датаграмм. Основными протоколами этого уровня являются TCP и UDP. Протокол TCP обеспечивает один-на-один, ориентированную на соединение, надежную службу связи. Он отвечает за последовательность и подтверждение отправленных пакетов, а также восстановление пакетов, потерянных при передаче. UDP предоставляет один-к-одному или один-ко-многим, без подключения, ненадежную службу связи. UDP обычно используется, когда объем передаваемых данных невелик (например, данные помещаются в один пакет).
Сетевой (межсетевой) уровень
Сетевой уровень отвечает за адресацию хостов, упаковку и функции маршрутизации. Основными протоколами сетевого уровня являются IP, протокол разрешения адресов (ARP), протокол управляющих сообщений Интернета (ICMP) и протокол управления группами Интернета (IGMP). На этом уровне IP добавляет заголовок к пакетам, который известен как IP-адрес. Сейчас есть IPv4 (32-разрядный) адрес и IPv6 (128-разрядный) адрес.
сетевой-уровень
Рис.2: примеры IPv4 и IPv6 адресов.
Уровень сетевого доступа
Уровень сетевого доступа (или канальный уровень) отвечает за размещение пакетов TCP/IP на сетевом носителе и получение пакетов TCP/IP с сетевого носителя. TCP/IP разработан, чтобы быть независимым от метода доступа к сети, формата кадра и среды. Другими словами, он не зависит от какой-либо конкретной сетевой технологии. Таким образом, TCP/IP можно использовать для подключения различных типов сетей, таких как Ethernet, Token Ring и асинхронный режим передачи (ATM).
Как обрабатываются данные во время передачи?
В многоуровневой системе устройства обмениваются данными в другом формате, известном как блок протокольных данных (PDU). В таблице ниже показаны PDU на разных уровнях.
QQ图片20190225151147
Таблица: блок протокольных данных (PDU), обрабатываемый на разных уровнях.
Например, когда пользователь запрашивает просмотр веб-сайта на компьютере, программное обеспечение удаленного сервера сначала передает запрошенные данные на прикладной уровень, где они обрабатываются от уровня к уровню, при этом каждый уровень выполняет свои назначенные функции. Затем данные передаются по физическому уровню сети до тех пор, пока их не получит конечный сервер или другое устройство. На этом этапе данные снова передаются вверх по уровням, каждый уровень выполняет назначенные ему операции, пока данные не будут использованы принимающим программным обеспечением.
osi-and-tcpip-models
Рисунок 3: потоки данных от верхних уровней к нижним, каждый уровень добавляет верхний/нижний колонтитул к PDU.
Во время передачи каждый слой добавляет верхний или нижний колонтитул или оба к PDU, поступающему с верхнего уровня, который направляет и идентифицирует пакет. Этот процесс называется инкапсуляцией. Верхний (и Нижний колонтитулы) и данные вместе образуют PDU для следующего уровня. Процесс продолжается до достижения самого низкого уровня (физического уровня или уровня доступа к сети), с которого данные передаются на принимающее устройство. В приемном устройстве происходит обратный процесс, де-инкапсуляции данных на каждом уровне. верхние и нижние колонтитулы направляют операции. Затем приложение, наконец, использует данные. Процесс продолжается до тех пор, пока все данные не будут переданы и получены.
Со знанием разделения уровней, мы можем диагностировать, где находится проблема, когда соединение пропадает. Принцип состоит в том, чтобы проверить с самого низкого уровня, а не с самого высокого уровня. Потому что каждый уровень служит для уровня выше, и будет легче справиться с проблемами нижнего слоя. Например, если компьютер не может подключиться к интернету, первое, что необходимо сделать, это проверить, подключен ли сетевой кабель к компьютеру или подключена ли к коммутатору точка беспроводного доступа (WAP).
Модель TCP/IP старше модели OSI. На следующем рисунке показана соответствующая взаимосвязь их уровней.
comparison-of-osi-and-tcpip
Рисунок 4: модель OSI vs модели TCP/IP и набор протоколов TCP/IP.
Сравнивая слои TCP/IP-модели, и модели OSI, прикладной уровень протокола TCP/IP-модели аналогичен комбинации слоев 5, 6, 7 модели OSI, но TCP/IP-модель не имеет отдельного уровня представления и сеансового уровня. Транспортный уровень протокола TCP/IP включает в себя функции транспортного уровня OSI и некоторые функции сеансового уровня модели OSI. Уровень доступа сети модели TCP/IP охватывает канальный и физический уровни модели OSI. Обратите внимание, что сетевой уровень TCP/IP не использует преимущества служб последовательности и подтверждения, которые могут присутствовать на канальном уровне передачи данных модели OSI. Это ответственность транспортного уровня в модели TCP/IP.
Значение TCP/IP и OSI в устранении неполадок
Учитывая значения двух моделей, модель OSI является концептуальной моделью. Она в основном используется для описания, обсуждения и понимания отдельных сетевых функций. Однако, TCP/IP в первую очередь сконструирована для того чтобы разрешить специфический круг проблем, а не действовать как описание поколения для всех сетевых взаимодействий как модель OSI. Модель OSI является общей, независимой от протокола, но большинство протоколов и систем придерживаются ее, в то время как модель TCP/IP основана на стандартных протоколах, которые разработал интернет. Другой момент, который следует отметить в модели OSI заключается в том, что не все уровни используются в более простых приложениях. В то время как уровни 1, 2, 3 являются обязательными для любой передачи данных, приложение может использовать какой-то уникальный интерфейс уровня вместо обычных верхних уровней в модели.
Заключение
Модель TCP/IP и модель OSI являются концептуальными моделями, используемыми для описания всех сетевых коммуникаций, в то время как TCP/IP сама по себе также является важным протоколом, используемым во всех операциях Интернета. Как правило, когда мы говорим об уровне 2, уровне 3 или уровне 7, в котором работает сетевое устройство, мы имеем в виду модель OSI. Модели TCP/IP используется как для моделирования текущей архитектуры Интернета и обеспечивают набор правил, которым следуют все формы передачи по сети.

Комментарии

Популярные сообщения из этого блога

Что такое OM1, OM2, OM3 и OM4?

Имеются разные типы оптических патч-кордов. Некоторые из них одномодовые, а некоторые многомодовые. Многомодовые патч-корды описываются по их сердечнику и диаметрам оболочки. Обычно диаметр многомодового патч-корда составляет 50/125 µm или 62.5/125 µm. В настоящее время имеются четыре типа многомодовых патч-кордов: OM1, OM2, OM3 и OM4. Буквы «ОМ» означают оптический многомодовый. Каждый тип патч-кордов имеет свои разные характеристики. Стандарт Каждые «ОМ» имеют требование на минимальную Модовую Широкополосность(MBW). OM1, OM2 и OM3 определяются стандартом ISO 11801, который основан на модовой широкополосноти многомодового патч-корда. В августе 2009 года, TIA/EIA утвердил и выпустил 492AAAD, который определяет критерий эффективности для OM4. Хотя они разработали оригинальные обозначения «ОМ», IEC еще не выпустил утвержденный эквивалентный стандарт, который в конце концов будет документирован как тип патч-корда A1a. 3 в IEC 60793-2-10. Спецификации  · OM1 кабель типично имеет оран

Одномодовое Волокно OS1 vs OS2: В Чём Разница?

Как известно, мультимодовое волокно обычно разделают на типы: OM1, OM2, OM3, OM4 и OM5. Что насчет одномодового волокна? Основными категориями одномодового волокна являются OS1 и OS2 . OS1 и OS2 - это две разные спецификации одномодового оптоволокна, между которыми достаточно много различий. В данной статье приводится сравнение этих двух типов, а также дается руководство по выбору правильного типа, подходящего под Ваши требования. Что такое одномодовое волокно В волоконно-оптических сетях одномодовым (SMF), или мономодовым волокном, называют оптическое волокно, предназначенное для передачи одного луча или одной световой моды за один момент времени. Как правило, одномодовые кабели имеют тонкую сердцевину с диаметром 8-10 мкм (микрометров), по которой могут распространяться длины волн в 1310 нм и 1550 нм. Маленький размер диаметра сердцевины и одиночный световой импульс фактически исключают любые искажения, которые могли быть вызваны перекрытием световых импульсов. Благодаря этому,

Базовые Знания о 1000BASE-SX и 1000BASE-LX SFP

Gigabit Ethernet считается огромным прорывом в телекоммуникационной отрасли путем преложения скорости макс. до 100 Мбит/с. Gigabit Ethernet является стандартом для передачи Ethernet фреймов со скоростью гигабит в секунду. Существует пять стандартов физического уровня для Gigabit Ethernet с использованием оптического волокна 1000BASE-X, кабеля витой пары (1000BASE-T) или экранированного симметричного медного кабеля (1000BASE-CX). 1000BASE-LX и 1000BASE-SX SFP представляют собой два распространенных типа оптических модулей на рынке. Сегодняшняя тема кратко представит модули 1000BASE-LX и 1000BASE-SX SFP. В этих терминах 1000BASE относится к соединению Gigabit Ethernet, которое использует нефильтрованный кабель для передачи данных. «X» означает блочное кодирование 4B/5B для Fast Ethernet или блочное кодирование 8B/10B для Gigabit Ethernet. «L» означает дальнодействующий одно- или многомодовый оптический кабель (от 100 м до 10 км). «S» означает короткодействующий многомодовый оптический